
Near-wall LES closure based on one-dimensional
turbulence modeling

Rodney C. Schmidt a,*, Alan R. Kerstein b, Scott Wunsch b, Vebjorn Nilsen c

a Computational Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
b Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550, USA

c Lawrence Livermore National Laboratory L-039, Livermore, CA 94550, USA

Received 5 September 2001; received in revised form 29 July 2002; accepted 9 October 2002

Abstract

A novel near-wall LES closure model is developed based on a revised form of the one-dimensional turbulence (ODT)

model of Kerstein and is tested by performing LES calculations of turbulent channel flow at Reynolds numbers based

on friction velocity ranging from 395 to 10,000. In contrast to previous models, which invoke Reynolds averaging, near-

wall velocity fluctuations and turbulent transport are simulated down to the smallest scales, and can be compared

directly to DNS data. Thus, the approach provides more than just a boundary condition. Rather, it is itself a complete

(although simplified) model for the wall-normal profiles of velocity within the near-wall region. LES/ODT coupling is

bi-directional and occurs both through the direct calculation of the subgrid turbulent stress by temporally and spatially

filtering the ODT-resolved momentum fluxes (up-scale coupling), and through the LES-resolved pressure and velocities

impacting the ODT behavior (down-scale coupling). The formulation involves finely resolved ODT lines that are

embedded within each wall-adjacent LES cell – denoted the inner region. LES cells that are within approximately one

LES filter width of the inner region belong to an overlap region where both ODT and LES modeling is active. All other

cells are treated using a standard LES approach. Although more expensive than simpler models, the cost of the model

relative to the LES portion of the simulation scales favorably with problem size, leading to computationally affordable

simulations even at relatively high Reynolds numbers.

� 2003 Published by Elsevier Science B.V.
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1. Introduction

The large eddy simulation (LES) approach to computing turbulent flows has seen a veritable renaissance

in recent years due to the availability of faster computers, new modeling approaches, and a continued desire

for higher fidelity predictive capabilities [22,41]. In contrast to Reynolds-averaged Navier–Stokes (RANS)

Journal of Computational Physics 186 (2003) 317–355

www.elsevier.com/locate/jcp

*Corresponding author.

E-mail address: rcschmi@sandia.gov (R.C. Schmidt).

0021-9991/03/$ - see front matter � 2003 Published by Elsevier Science B.V.

doi:10.1016/S0021-9991(03)00071-8

mail to: rcschmi@sandia.gov


methods, whose basic equations are derived by ensemble or time averaging, the LES equations are obtained

by applying the idea of spatial filtering. Thus the equations are time dependent and allow for the large-scale

three-dimensional unsteadiness that is a vital feature of many engineering and environmental flows.

However, the relative computational cost of LES reflects this difference, and LES is in general significantly

more expensive than RANS simulations.

To close the LES equations, a subgrid model is required in order to capture the effects of unresolved

turbulent motions on the resolved flow scales. The fidelity required of a subgrid model to achieve acceptable

overall predictions depends upon several factors, including the fineness of the resolved mesh, the type of
problem being solved, and what aspects of the particular flow are important.

For turbulent flows with solid (i.e., no-slip) walls, the subgrid closure problem in the near-wall region

is a difficult problem for several reasons. First, uniform filtering becomes ill defined in the near-wall

region if the filter width at a given point extends beyond the wall boundary. This introduces mathe-

matical ambiguities that are difficult to reconcile. Second, the dynamics of the flow near the wall are

strongly anisotropic, and turbulence production in this region is associated with an up-scale energy

cascade that is largely dominant over the commonly assumed down-scale energy cascade that is present

elsewhere. Finally, the dominant flow scale at a given distance from the wall is of the order of that
distance. Thus, the �large eddies� that must be captured on the mesh to perform an accurate LES shrink

in size as one approaches the wall, leading to excessive computational costs. Several authors have esti-

mated how this resolution requirement scales with Reynolds number, including Chapman [10] (who

looked primarily at aerodynamic boundary layers), and Baggett et al. [3] (who focus on turbulent channel

flow). These analyses show that the number of grid points required for proper LES resolution of the

near-wall region scales approximately as the square of the Reynolds number – a constraint that makes

near-wall resolved LES at moderate to high Reynolds numbers unfeasible using present computational

resources. To some extent the computational expense can be mitigated by resolving only the near-wall
region with a fine mesh. This requires non-uniform meshing techniques coupled with accurate numerics

and LES models designed for non-uniform meshes. Although recent work has demonstrated some success

in this area (see [29,39]), the computational expense is still quite large, especially for higher Reynolds

number flows.

The objective of wall modeling is to provide an approach that in some simplified manner adequately

approximates the near-wall effects while avoiding the overwhelming computational expense of resolving

the near-wall flow structures. Various models have been proposed and tested, and the recent literature

contains several summaries and reviews that provide greater detail than can be presented here (see, for
example [6,9,11,37,41]). The first LES wall model was proposed by Deardorff [13] who considered a coarse

LES of plane channel flow at infinite Reynolds number. This model imposed conditions on the second

derivative of the velocity at the first near-wall grid point such that the plane-averaged velocity profile at

this same location satisfied a log law in the mean. Results did not compare particularly well with data, but

as has been pointed out [37], this was probably due as much to the poor mesh resolution as to defects in the

model.

In 1975 Schumann [42] introduced the first member of a family of approaches, called wall-stress

models by Cabot and Moin [9], that share several key characteristics and that are commonly used
today. As with Deardorff�s model, the near-wall region is not resolved by the mesh. However, instead
of imposing conditions on the velocity, a wall-stress boundary condition is imposed at the wall. In

Schumann�s original model, the mean wall shear stress hswi was assumed known (from the driv-

ing pressure gradient), and the instantaneous shear seen by the LES at any point in time is computed

as

s12ðx; zÞ ¼
hswi

h�uuðx; Ym; zÞi
�uuðx; Ym; zÞ; ð1Þ

318 R.C. Schmidt et al. / Journal of Computational Physics 186 (2003) 317–355



s23ðx; zÞ ¼ m
�wwðx; Ym; zÞ

Ym
; ð2Þ

where Ym denotes the distance between the wall and the first near-wall node, m is the kinematic viscosity, u
and w denote the streamwise and spanwise velocities respectively, an overbar denotes an LES-resolved

quantity, and h�i denotes a time average.
Schumann�s original model is constrained by having to know the mean shear stress a priori, and thus has

limited use. Extensions that overcome this have been developed by proposing different simplified models for

the flow within the inner region (i.e., the domain between the wall and the first near-wall node), and dif-
ferent couplings with the outer flow conditions. This was first done by Grotzbach [19] who assumed that the

mean velocity between the wall and the first LES grid point satisfied a logarithmic law of the wall, such that

h�uuðx; Ym; zÞi ¼ us
1

j
lnðYmus=mÞ

�
þ B

�
; ð3Þ

where us is the friction velocity (¼
ffiffiffiffiffi
sw

p
), j is the Von Karman constant, B is the value of the log law

intercept, and in this context h�i denotes an average over a plane parallel to the wall. Solving for us

(typically an iterative process) allows one to compute the shear stress at the wall. Eq. (1) can then be applied

to complete the model. Subsequent variations and refinements of this approach have been suggested by

Mason and Callen [31], Piomelli et al. [38], and Hoffman and Benocci [21].

An alternative, more sophisticated wall-stress model was suggested by Balaras et al. [4,5] and also

studied by Cabot [6,7]. Called a two-layer model by its authors, the idea is to replace Eq. (3) with a transient

form of the thin boundary-layer equations, which are assumed valid in the inner region. Following Cabot
and Moin [9], the model equations for the two horizontal velocities can be written as

o~uui
ot

þ o

oxj
ð~uui~uujÞ þ

o �PPm
oxi

¼ o

oy
ðm
"

þ mtÞ
o~uui
oy

 !#
; i ¼ 1; 3; ð4Þ

where continuity is used to find the wall-normal velocity

~uu2 ¼ 	
Z y

0

o~uu1
ox1

 
þ o~uu3

ox3

!
dy ð5Þ

and the tilde is used here to denote the velocities computed using the boundary-layer equations. �PPm is the
near-wall pressure computed from the LES equations (assumed to be independent of y in the inner region),
and boundary conditions are imposed at the wall ð~uuið0Þ ¼ 0Þ and at the nearest LES grid point

(~uuiðYmÞ ¼ �uuiðYmÞ). The eddy viscosity mt is computed using algebraic damping functions based on mixing-
length theory, with different authors preferring different models [5,6].

On application, a refined one-dimensional mesh that extends from the wall to the first LES grid point is

embedded within the LES mesh. Eq. (4) is numerically solved at each LES time step, the shear stress at the

wall explicitly calculated and its value specified as a boundary condition for the LES equations.

A more recent modeling approach that differs significantly from the wall-stress models is based on the

idea of merging LES with RANS to model the near-wall region [2,35]. Called the detached eddy simulation

(DES) approach, this can be viewed as an extension of an idea suggested by Schumann [42]. However,

instead of using a simple mixing-length based eddy viscosity, these models use more sophisticated proce-
dures to compute the near-wall eddy viscosity. In the near-wall region the equations reduce to transient

RANS equations and turbulent transport is accounted for primarily through an enhanced diffusion

mechanism. Away from the wall the equations take on the form of a traditional LES with a gradient-

diffusion subgrid closure model. This approach has similarities to the two-layer wall-stress model of Balaras
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et al. [5] in that the very near wall region in both approaches is modeled with a set of transient-RANS type

equations. (In [37] they are both called zonal models.) In the DES approach, the transition from the near-

wall RANS domain to the outer-flow LES domain is continuous, while in the wall-stress model there is a

discrete jump between regions.

Figs. 1(a) and (b) illustrate the conceptual regions defined in the wall-normal direction by wall-stress

models and by the DES model.

In summarizing the current state-ot-the-art of wall modeling, Piomelli and Balaras [37] point out that

although significant progress has been made, the need for continued work in this area remains. For simple
flows in which the near-wall behavior is known to follow a prescribed form, algebraic wall-stress models are

attractive because they are relatively easy to implement, are computationally inexpensive, and produce

reasonable results. However, for more general and complex configurations, the simple models are neither

well suited nor well tested. Zonal models (i.e., the two-layer model and the DES approach) have shown

improved results in cases where equilibrium laws fail but where the flow is driven by the outer-layer dy-

namics. In general they suggest that current wall models tend to be accurate only when the inner/outer-layer

interaction is one-way, with the outer-layer dynamics providing the dominant forcing.

This limitation is understandable in light of the fact that all current LES wall models, either explicitly or
implicitly, consider the inner layer in a Reynolds-averaged sense. Thus, near-wall turbulent velocity fluc-

tuations are suppressed, and the proper dynamic coupling between the wall and the bulk flow is difficult to

achieve. In addition, we note that near-wall flows of interest may also be subject to multiphysics processes

(thermally induced property variations, gravitational and other body forces, multiphase couplings, etc.)

whose dynamic interactions with the bulk flow also can not be captured by currently available wall

treatments.

The new approach developed here is significantly different from previous models. It is based on

coupling the outer flow LES equations to a revised form of the one-dimensional turbulence (ODT) model
of Kerstein [25]. A key attribute of the ODT based approach is that near-wall velocity fluctuations are

not suppressed, but are in fact a fundamental aspect of the model itself. In addition, the approach

provides more than just a boundary condition. Rather, it is itself a complete (although simplified) model

for the velocity (and in principle all associated scalars) within the near-wall region. Finally, the near-wall

model dynamics are intimately coupled with the dynamics of the outer-flow LES, allowing for two-way

interactions.

Fig. 1(c) illustrates how the near-wall region is conceptualized in the LES/ODT approach in comparison

with wall-stress (1a) and DES (1b) approaches. In the near-wall region, an ODT mesh that is finely resolved
in the wall-normal direction is embedded within a coarse LES mesh. The ODT evolution equations (de-

scribed later) capture fine-scale temporal and spatial variations (in one direction) of the three-component

Fig. 1. Conceptual regions and illustrative wall-normal discretization for different LES near-wall models.
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velocity field. From a geometric standpoint, one can see that the current model has strong similarities to the

two-layer wall-stress model – which also applies an embedded mesh in an inner region (that, in this case,

extends only to the first LES mesh point). However, the equations governing the LES/ODT inner region are

fundamentally different. For example, the present model does not apply gradient-diffusion-based ideas (e.g.,

an eddy-viscosity model) for the turbulent transport in this region. In ODT, turbulent transport is simu-

lated through a sequence of fluid-element rearrangements (called eddy events) that occur at multiple length

scales and frequencies. In addition, the LES/ODT coupling is strongly bi-directional, and occurs not only at

a specific distance from the wall (i.e, as a boundary condition), but throughout an overlap region that
extends upwards from the wall through several LES control-volume widths.

The remainder of the paper is organized into five parts. Sections 2 and 3 provide brief descriptions of

both the conceptual framework and governing equations of the ODT and LES modeling approaches, re-

spectively. Section 4 describes a coupled LES/ODT model for use in the near-wall region of an LES. Section

5 presents the results of applying the coupled LES/ODT model to fully developed turbulent channel flow at

Reynolds numbers based on friction velocity ranging from 395 to 10,000. Section 6 is a concluding dis-

cussion of various points relevant to the the new modeling approach and the direction future development

is expected to take.

2. Overview of ODT

ODT is a method for simulating, with full spatial and temporal resolution, the turbulent transport and

dynamic fluctuations in velocity and fluid properties that one might measure along a one-dimensional (1D)

line of sight through an actual 3D turbulent flow. In the 1D dynamical system defined by the ODT model,

the effects of turbulent 3D eddies associated with real fluid flow are captured by 1D fluid-element rear-
rangement events (called eddy events) that occur over a range of length scales with frequencies that depend

on event length scales and instantaneous flow states. ODT is an outgrowth of the linear-eddy model [24], in

which fluid motions are prescribed without explicit introduction of a velocity field or dependence on the

instantaneous flow states. The first ODT formulation [25] involved simulation of a single velocity com-

ponent evolving on a line. A more recent formulation [27] introduced the evolution of the three-component

velocity vector on the 1D domain. Generalization to treat variable-density effects dynamically has been

demonstrated [1]. For the work presented in this paper, the formulation described in [27] is adopted as a

starting point. Only an abbreviated description of the model is included here, with constant density as-
sumed for simplicity, and the emphasis is on those aspects most relevant to the LES subgrid model de-

scribed later. In addition, the numerical implementation of ODT for stand-alone calculations (i.e., no

multidimensional grid, a single ODT line spanning the channel) of turbulent channel flow is briefly de-

scribed, together with representative results. This is done in order to demonstrate how the model constants

are determined and to give context to its more restricted use as a subgrid model.

2.1. Modeling approach

The version of ODT utilized here describes the evolution of a three-component vector velocity field

viðy; tÞ defined on a one-dimensional domain (parameterized by the spatial coordinate y, corresponding to
the direction i ¼ 2). Additional scalar fields hðy; tÞ may also be defined in the model, but are not imple-
mented here.
The fields defined on the 1D domain evolve by two mechanisms: (1) molecular diffusion, and (2) a

sequence of instantaneous transformations, denoted �eddy events,� which represent turbulent stirring.

Each eddy event may be interpreted as the model analog of an individual turbulent eddy. The location,

length scale, and frequency of eddy events are determined by a non-linear probabilistic model explained in
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Section 2.2. Of note here is that each event is characterized by three properties, a length scale, a time scale,

and a measure of kinetic energy, and that a key physical input to the model is a postulated relationship

among these quantities that is analogous to the usual dimensional relationship applied to individual

turbulent eddies.

During the time interval between each eddy event and its successor, molecular diffusion occurs, governed

by the equations

ot

	
	 mo2y



viðy; tÞ ¼ 0; ð6Þ

ot

	
	 jo2y



hðy; tÞ ¼ 0; ð7Þ

where m is the kinematic viscosity and j is the scalar diffusivity.
In the current formulation, each eddy event consists of two mathematical operations. One is a measure-

preserving map representing the stirring motions associated with a notional turbulent eddy. The other is a

modification of the velocity profiles in order to implement energy transfers among velocity components.

These operations are represented symbolically as

viðyÞ ! viðf ðyÞÞ þ ciKðyÞ;

hðyÞ ! hðf ðyÞÞ:
ð8Þ

According to this prescription, fluid at location f ðyÞ is moved to location y by the mapping operation, thus
defining the map in terms of its inverse f ðyÞ. This mapping is applied to all fluid properties. The additive
term ciKðyÞ affects only the velocity components, and is used to capture pressure-induced energy redis-
tribution among velocity components.

The functional form chosen for f ðyÞ, called the �triplet map�, is the simplest of a class of mappings that
satisfy the physical requirements of measure preservation (the nonlocal analog of vanishing velocity di-

vergence), continuity (no introduction of discontinuities by the mapping operation), and scale locality (at

most order-unity changes in property gradients). The first two requirements are fundamental properties.

The requirement of scale locality is based on the principle that length-scale reduction in a turbulent cascade

occurs by a sequence of small steps (corresponding to turbulent eddies), causing down-scale energy transfer
to be effectively local in wavenumber.

Mathematically, the triplet map is defined as

f ðyÞ � y0 þ

3ðy 	 y0Þ if y06 y6 y0 þ ð1=3Þl;
2l	 3ðy 	 y0Þ if y0 þ ð1=3Þl6 y6 y0 þ ð2=3Þl;
3ðy 	 y0Þ 	 2l if y0 þ ð2=3Þl6 y6 y0 þ l;
y 	 y0 otherwise:

8>>>><>>>>: ð9Þ

This mapping takes a line segment ½y0; y0 þ l, shrinks it to a third of its original length, and then places
three copies on the original domain. The middle copy is reversed, which maintains the continuity of ad-

vected fields and introduces the rotational folding effect of turbulent eddy motion. Property fields outside
the size-l segment are unaffected.
In Eq. (8), K is a kernel function that is defined as KðyÞ ¼ y 	 f ðyÞ, i.e., its value is equal to the distance

the local fluid element is displaced. It is non-zero only within the eddy interval, and it integrates to zero so

that the process does not change the total (y-integrated) momentum of individual velocity components. It

provides a mechanism for energy redistribution among velocity components, an important characteristic

that enables the model to simulate the tendency of turbulent eddies to drive the flow toward isotropy.
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The kinetic energy of an individual velocity component i is

Ei �
1

2
q
Z
v2i ðyÞdy: ð10Þ

(The density q, assumed constant, is defined here as mass per unit length.) The amplitudes ci in Eq. (8) are
determined for each eddy individually subject to the following constraints: (1) the total kinetic energy

E �
P

i Ei remains constant, and (2) the energy removed from any individual velocity component by the

kernel mechanism cannot exceed the energy available for extraction (see [27] for details). The values of ci
are governed by the relation

ci ¼
27

4l

0@	 vi;K þ sgnðvi;KÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1	 aÞv2i;K þ a

2

X
j 6¼i
v2j;K

s 1A; ð11Þ

where

vi;K � 1

l2

Z
viðf ðyÞÞKðyÞdy ¼

4

9l2

Z y0þl

y0

viðyÞ½l	 2ðy 	 y0Þdy ð12Þ

and the degree of energy redistribution is parameterized by an energy transfer coefficient a. The value
a ¼ 2=3 corresponds to equipartition of the available energy among velocity components and is used to
obtain the results presented here. Kerstein et al. [27] consider the effect of setting a ¼ 1, which maximizes

the intercomponent energy transfer. Although this choice has an impact on some velocity statistics, it is

found that properties of interest here are not very sensitive to the choice of a.

2.2. Eddy selection

The final ingredient required in the model is the determination of the time sequence of eddy events,

individually parameterized by position y0 and size l, that are implemented. In ODT, eddy events are im-
plemented instantaneously, but must occur with frequencies comparable to the turnover frequencies of

corresponding turbulent eddies. Events are therefore determined by sampling from an event-rate distri-

bution that reflects the physics governing eddy turnovers. A key feature of this distribution is that it is based

on the instantaneous state of the flow, and thus evolves in time as the flow evolves.

At each instant in time, the event-rate distribution is defined by first associating a time scale sðy0; lÞ
with every possible eddy event. To this end, the quantity l=s is interpreted as an eddy velocity and ql3=s2

is interpreted as a measure of the energy of eddy motion. To determine s, this energy is equated to an
appropriate measure of the eddy energy based on the current flow state. For reasons explained elsewhere

[27], the energy measure that is used is the available energy of the i ¼ 2 velocity component upon

completion of eddy implementation, minus an energy penalty that reflects viscous dissipation effects. The

energy penalty introduces a threshold Reynolds number that must be exceeded for eddy turnover to be

allowable.

Based on these considerations, we use the relationship

l
s

� �2
� ð1	 aÞv22;K þ a

2
ðv21;K þ v23;KÞ 	 Z

m2

l2
ð13Þ

to determine s, where the coefficient Z in the viscous penalty is an order-unity parameter of the model.
Given Eq. (13), the time scales s for all possible eddies can be translated into an event-rate distribution k,

defined as
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kðy0; l; tÞ �
C

l2sðy0; l; tÞ
¼ Cm
l4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1	 aÞ v2;Kl

m

� �2
þ a
2

v1;Kl
m

� �2
þ v3;Kl

m

� �2" #
	 Z

vuut ; ð14Þ

where C is an adjustable parameter that controls the overall event frequency. If the right-hand side of Eq.
(13) is negative, the eddy is deemed to be suppressed by viscous damping and k is taken to be zero for that
case. In the square root term of Eq. (14), the quantities preceding Z involve groups that have the form of a

Reynolds number. Z can be viewed in this context as a parameter controlling the threshold Reynolds
number for eddy turnover.

The foregoing construction of the event-rate distribution involves three free parameters: C, a, and Z. The
overall rate constant C determines the relative strength of the turbulent stirring in the model. The transfer
coefficient a determines the degree of kinetic energy exchange among velocity components. The viscous
cutoff parameter Z determines the smallest eddy size for given local strain conditions. What remains in
order to completely specify an ODT flow simulation are the physical properties of the fluid (density, vis-

cosity, etc.) and the proper definition of initial and boundary conditions. Of these, only the boundary

conditions for confined turbulent flows require further discussion here.

The boundary condition for molecular evolution, Eq. (6), is simply the standard no-slip condition, i.e.,

the velocity components are set equal to the wall values. In confined flows, the turbulent stirring model also
feels the effect of boundaries through the implicit limitation they place on where eddies can occur and their

maximum length scale, Lmax. For example, in an ODT simulation of turbulent channel flow, the largest
mathematically realizable eddy event is equal to the channel width. However, since an eddy event is simply

a model for turbulent mixing, it should not be surprising that the behavior of real 3D flow is better rep-

resented by setting Lmax to a somewhat smaller value. Although not significant in the LES/ODT submodel
introduced here (where the LES/ODT coupling limits the physical size of the maximum eddy length),

this interesting detail is illustrated in example calculations of channel flow using stand-alone ODT in

Section 2.4.
Finally, we briefly note that an additional step is typically introduced in stand-alone calculations in order

to suppress unphysically large eddies that may otherwise occasionally occur. Like other multiscale models,

ODT has a low-wavenumber divergence that must be suppressed by introducing a cutoff mechanism [25].

For the example stand-alone calculations presented below, the �median method� described in [27] is used.
However, this detail is also unimportant to the LES/ODT coupling developed here because in this context

the ODT eddy event size is restricted, by construction, to only those length scales unresolved by the LES.

2.3. Numerical implementation

Neglecting data-gathering procedures, the numerical implementation of an ODT simulation involves

three subprocesses: molecular evolution, eddy selection, and eddy implementation.

Molecular evolution according to Eq. (6) can be computed numerically using any conventional ap-

proach. In the calculations performed here the molecular evolution is computed each time the eddy event-
rate distribution is sampled, leading to very small time steps. Therefore first-order explicit time integration

coupled with second-order central differencing of the diffusion term is employed.

As explained above, the sequence of eddy events implemented during a simulated realization is deter-

mined by sampling from the rate distribution k. However, each event, as well as the viscous evolution,
Eq. (6), between events, changes the velocity profiles vi and therefore modifies the rate distribution. From a

computational viewpoint this is a problem because it causes explicit construction of, and sampling from, the

rate distribution to be unaffordable owing to the need to repeatedly reconstruct this distribution.

To overcome this problem an indirect, but mathematically equivalent, procedure is employed that is
analogous to the �rejection method� described by Ross [40, p. 63], and is implemented once per eddy time
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step Dteddy. In this procedure a candidate eddy is chosen by random sampling of y0 and l values from a joint

probability density function gðy0; l; tÞ, called the trial PDF. In principle, the trial PDF can be almost ar-
bitrary (it is subject to some weak constraints), though the procedure is most efficient if it approximates the

true distribution. The remainder of the procedure is a determination of whether or not this candidate eddy

should be implemented.

The implementation decision is based on the model (described in Section 2.2) that determines the

�turnover time� s for the chosen eddy based on the instantaneous state of the simulated flow (for present
purposes, the vi profiles). s is used to determine a physically based value of the probability density of the
sampled values of y0 and l. By comparing this probability density and the probability density given by the
trial PDF gðy0; l; tÞ used for sampling, an acceptance probability Pa is computed that has a value between
zero and one. The final step is simply to accept the event probabilistically at a rate equal to this acceptance

probability.

The event statistics resulting from the combined process of sampling and subsequent acceptance or

rejection of a candidate eddy closely approximate the event statistics specified by the physical model. The

indirect procedure reproduces the statistics of the direct procedure to any desired accuracy by choosing a

small enough sampling time step Dteddy.
As further explanation we note that kðy0; l; tÞ can be viewed as the product of an overall rate of eddy

events, R ¼
R

kðy0; l; tÞdy0 dl, and a probability density function, R	1kðy0; l; tÞ, from which eddy parameters

y0 and l are sampled. On this basis, the probability of acceptance of a candidate eddy Pa is the product of
RDteddy (the ratio of the model-prescribed event-rate and the numerically implemented eddy-sampling rate)
and kðy0; l; tÞ=½Rgðy0; l; tÞ (the ratio of the model-prescribed probability density of the sampled parameter
values and the probability density according to the trial PDF gðy0; l; tÞ that is sampled to select the pa-
rameters of the candidate eddy). RDteddy � 1 is a necessary condition for the select-and-decide procedure to

approximate closely the eddy statistics that would be obtained by direct random sampling of the rate
distribution kðy0; l; tÞ [25].
Eddy implementation on a discretized domain requires the definition of the discrete eddy event. For

conservative implementation, the discrete triplet map is defined as a permutation of the cells of the discrete

domain. The eddy interval is taken to be an integer multiple of three cells. The smallest consistently defined

permutation involves six cells. Continuous and discrete representations of the triplet map are illustrated in

Figs. 2(a) and (b) respectively. In Fig. 2(c) the discrete implementation of Eq. (8), including the kernel

function, on a three-component velocity field is illustrated. For this example, the initial values of v and w
are uniform, but u has a linear profile. This highlights the transfer of kinetic energy among velocity
components using the kernel function.

2.4. Stand-alone ODT simulations of channel flow

The application of ODT as a stand-alone model for turbulent channel flow is demonstrated because it

illustrates the method for determining the ODT model constants. This application is also used as an initial

benchmark for the coupled LES/ODT model.

Fully developed turbulent flow in a planar channel of width 2h is simulated by applying the boundary
conditions vi ¼ 0 to all velocity components, and introducing a fixed source term 	ð1=qÞðoP=dxÞ on the
right-hand side of Eq. (6) for i ¼ 1. This term introduces an imposed mean pressure gradient in the

streamwise ðxÞ direction, but does not include pressure fluctuations. (Pressure fluctuations are not modeled
explicitly, but their effects are represented in the implementation of eddy events.)
ODT results for statistically steady flow are compared to corresponding DNS results of Moser et al. [33],

who report results for Res ¼ 180, 395, and 590. Here, Res ¼ ush=m, where us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdv1=dyjy¼0

q
is the friction

velocity. Grid-independent results were obtained for uniformly discretized meshes with Dyþ < 1 (yþ ¼
yus=m).
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To perform the simulations, values of C, Z, a and Lmax must be specified. The friction law is sensitive
mainly to C, which controls the turbulence intensity. By controlling the frequency of small eddies (i.e., the
viscous cutoff), Z mainly affects the transition of the mean velocity profile from the near-wall viscous

sublayer to the log-law region, thus defining the nature of the buffer layer. The effect of neglecting Z (by
setting Z to a very small value) is illustrated by curve (a) in Fig. 3. For this case, adjustment of C to obtain a
good fit to the friction law yields a value C ¼ 6:22 and a mean velocity profile in which the buffer layer is
essentially removed and the log layer extends down to within numerical resolution of the wall.
Optimum values of C and Z were found by adjusting these parameters to obtain a good match to the

DNS friction coefficient and mean velocity profile at Res ¼ 590, while keeping the values of a and Lmax
constant and equal to 2=3 (corresponding to an equalization of component energies) and 2h (the channel
width), respectively. This yields curve (b) of Fig. 3, for which C ¼ 12:73 and Z ¼ 98. Finally, curve (c) of

Fig. 3 illustrates the effect of adjusting the value of Lmax. For Lmax ¼ 2h, the wake region of the flow (the
flow in the central portion of the channel) is not well represented. However, for Lmax ¼ h, the wake region is
captured quite well.

Based on these results the best-fit values for the ODT model parameters are taken to be C ¼ 12:73,
Z ¼ 98, and Lmax ¼ h, and are held constant for simulations at all other Reynolds numbers.
Fig. 4 shows computed friction coefficients over a range of Reynolds numbers and compares ODT values

with the DNS data of Moser et al. [33] and the turbulent correlation of Dean [12]. The Reynolds number

used in this plot is based on the bulk velocity �UU and the channel width 2h, and the friction coefficient is

Fig. 2. Illustration of: (a) an analytical triplet map of a scalar with initially uniform gradient, (b) a discrete triplet map of a scalar with

initially uniform gradient, and (c) a discrete eddy event on a three-component ODT velocity field where the initial values of v and w are
uniformly zero.
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defined as Cf ¼ 2ðus= �UUÞ2. Good agreement is obtained with the DNS Cf value at Res ¼ 395 but a slight

overprediction of Cf at Res ¼ 180 is observed. ODT is formulated based on scalings applicable to high-

intensity turbulence, so it may provide a less accurate representation of the weak turbulence at this Res

value. For the other flow properties considered here, neither DNS nor ODT exhibit much sensitivity to Res,

so additional stand-alone results are shown only for Res ¼ 590.

Although ODT is only 1D in space, transient velocity fluctuations are fully resolved in time, and higher

order statistical quantities of interest can be computed. For example, the diagonal components, and the

nonvanishing off-diagonal component, of the scaled Reynolds-stress tensor for turbulent channel flow are
shown in Fig. 5 and compared to DNS data. The physically valid ODT definitions of these and other high-

order statistics are explained in detail elsewhere [25,27]. Of note is that hv01v02i compares very well, but the
diagonal components are somewhat underpredicted by ODT. We also see a small dip at the near-wall peak

of the streamwise component of the Reynolds stress – an artifact that is due to the combined effects of ODT

Fig. 4. ODT computed friction coefficient Cf for channel flow compared to DNS data [33] and the correlation of Dean [12]. Here, Re is
based on the bulk velocity and the channel width (2h).

Fig. 3. Semilog plot of ODT and DNS [33] mean velocity profiles for channel flow at Res ¼ 590, in wall coordinates. Note that (b) and

(c) are vertically offset from (a) for clarity in illustrating the effects of changing the ODT model parameters.
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eddy structure (see Fig. 2) and near-wall eddy statistics. Later it is shown that coupled LES/ODT results for
the diagonal components are in much better agreement with DNS results, suggesting a more realistic

forcing of the near-wall region when the bulk flow is modeled with LES and the effects are coupled to ODT.

Fig. 5 also illustrates that hv022 i and hv023 i are statistically identical in the current ODT model. This is due to
the coordinate invariance of the pressure scrambling mechanism used in the present multi-component

formulation. More general formulations that break this symmetry (and involve three distinct eddy types)

have been tested, but are not applied here.

In another illustration shown in Fig. 6, remarkable similarity is shown between ODT and DNS for

different terms of the v1 variance budget. Although some differences are seen, the results suggest that despite
being a 1D model, the near-wall flow energetics of ODT reflect fundamental characteristics of 3D turbulent

flow.

Fig. 5. Lateral profiles of Reynolds stress components in channel flow, scaled by u2s : (—) hv021 i; (– � � � –) hv022 i; (– � –) hv023 i; (–––) hv01v02i.
(The ODT hv023 i profile is identical to the ODT hv022 i profile.) ODT and DNS [33] results are plotted right and left of centerline,

respectively.

Fig. 6. Budget of hv021 i in channel flow, in wall coordinates: (—) production (upper), dissipation (lower); (–––) advective transport;
(– � –) viscous transport; (– � � � –) scrambling. ODT and DNS [33] results are plotted right and left of centerline, respectively.
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3. Summary of the LES bulk-flow model

In the current approach, turbulent flow away from the wall (i.e., the bulk flow) can be modeled by any

standard LES approach. Here we briefly review the LES equations and the dynamic Smagorinsky subgrid

model used in the present work.

The classic LES equations are well known (e.g., see [11,18,41]), and can be derived by applying the

concept of spatial filtering to the continuity and Navier–Stokes equations. Assuming the filter commutes

with differentiation, and for an incompressible fluid with constant properties, the following LES equations
of motion can be derived:

q
o�uui
ot

þ q
o

oxj
ðuiujÞ ¼ 	 o�pp

oxi
þ o

oxj
l

o�uui
oxj

 !" #
þ q �ffi; ð15Þ

o�uui
oxi

¼ 0: ð16Þ

Here, l ¼ qm is the dynamic viscosity and the spatial coordinates are denoted ðx1; x2; x3Þ instead of ðx; y; zÞ to
allow use of the convention that repeated indices imply summation (unless stated otherwise). These two

notations are used interchangeably in what follows because each is more convenient in certain contexts.

Also, u rather than v is used to denoted velocity. Throughout the paper, u is used in LES equations and v is
used in equations governing ODT processes so that the origin (LES or ODT) of quantities appearing in the

combined LES/ODT formulation is clear in all instances.

To solve the LES equations a closure model must be chosen for the nonlinear advective term (the second

term in Eq. (15)). To this end, it is common to define a subgrid-scale stress tensor as follows:

sij ¼ uiuj 	 �uui�uuj: ð17Þ

Gradient-diffusion models adopt the hypothesis that the anisotropic part of the subgrid-scale stress

tensor s is proportional to the resolved (large scale) strain-rate tensor S:

sij 	
1

3
dijskk ¼ 	2 lS

q
�SSij; ð18Þ

�SSij ¼
1

2

o�uui
oxj

 
þ o�uuj

oxi

!
; ð19Þ

where lS is a subgrid eddy viscosity, which must be computed from an appropriate model, and dij is the
Kronecker delta. By defining a modified pressure �PP that includes the subgrid kinetic energy (i.e., the trace of
s), and dropping the body-force term q �ffi for simplicity, Eq. (15) can now be expressed as

q
o�uui
ot

þ q
o

oxj
ð�uui�uujÞ ¼ 	 o �PP

oxi
þ o

oxj
ðl
"

þ lSÞ
o�uui
oxj

 !#
: ð20Þ

One of the first models for the subgrid eddy viscosity was introduced by Smagorinsky [43] and it remains,

together with its variants, a widely applied model. It can be written compactly as

lS ¼ qðCSDÞ2ð2�SSij�SSijÞ1=2; ð21Þ
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where CS is called the Smagorinsky coefficient, and the characteristic filter width D is generally computed as
the cube root of the local cell volume:

D ¼ ðDx1Dx2Dx3Þ1=3: ð22Þ

A method for dynamically adjusting the Smagorinsky coefficient to the local features of the flow was first

suggested by Germano et al. [16]. The basic idea is to assume that the constant in the eddy-viscosity re-

lationship is the same for a second filter of larger width D0. Given this second filter, typically referred to as

the test filter, we can define a second subgrid-scale stress tensor Tij as follows:

Tij ¼ guiujuiuj 	 ~�uu�uui~�uu�uuj: ð23Þ

The tilde denotes the test filter, here applied to quantities that have already been subject to a filter of width

D. We now note that the difference between this tensor Tij and the filtered value of sij (using the test filter)
can be written in terms of quantities that can be computed, i.e.,

Lij ¼ Tij 	 ~ssij ¼ g�uui�uuj�uui�uuj 	 ~�uu�uui~�uu�uuj: ð24Þ

If we apply the assumption that the Smagorinsky coefficient is the same at both filter widths, then we can
write

g�uui�uuj�uui�uuj 	 ~�uu�uui~�uu�uuj ¼ 2ðCSD0Þ2j�SS0j�SS0
ij 	

g
2ðCSDÞ2j�SSj�SSij2ðCSDÞ2j�SSj�SSij ; ð25Þ

where the wide tilde over the rightmost term indicates test filtering of the entire term. This is an overde-

termined but closed system of equations for the Smagorinsky coefficient CS. The most common method of
dealing with the overdeterminancy is to use the least-squares solution described by Lilly [30]. However, the

fact that CS appears inside the filtering operation (second term on the right-hand side of Eq. (25)) intro-

duces some additional mathematical and practical problems for which various solutions have been pro-

posed. These are discussed by Ghosal et al. [17], who propose a dynamic localization procedure which uses

a constrained variational formulation.

For flows with two homogeneous directions, such as fully developed turbulent flow between parallel
plates, the following formula is obtained by assuming that CS is only a function of y and t and is positive
[17]:

CSðy; tÞ ¼
hmijLijixz
hmklmklixz

� �
þ
: ð26Þ

Here mij ¼ 2ðD0Þ2j�SS0j�SS0
ij 	

g
2ðDÞ2j�SSj�SSij2ðDÞ2j�SSj�SSij , hixz denotes integration over a layer of finite thickness in the xz plane,

and the brackets with a þ subscript denote the operation of taking the positive part, i.e., ½xþ ¼ 1
2
ðxþ jxjÞ

for any real number x.
The dynamic Smagorinsky subgrid model just described completes the description of the bulk-flow LES

model used in this work. In practice, discrete approximate forms of these equations are solved using the

second-order numerical method described later in Section 4.5.

An alternative, conceptually distinct way to develop the discrete LES equations is described by Schu-

mann [42]. This approach is important to note here because it is invoked in the ODT-based near-wall model
described below. Called the �volume-balance method,� the averaged quantities correspond to a discrete
number of volumes that are fixed in space (i.e., the mesh). In essence, it is simply a control-volume nu-

merical scheme developed for LES. The governing equations are integrated by parts to obtain discrete

budget equations for the individual mesh cells. The modeling problem then reduces to representing the

unresolved surface fluxes in terms of the spatially averaged quantities that are available, and similar
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methods as described above can be used to develop closure models. An advantage of this method is that

irregular or anisotropic meshes do not introduce fundamental errors. (For the classic approach with non-

uniform meshes, filter commutativity becomes a problem [41].) Adopting Schumann�s notation, the discrete
momentum equation that would correspond to Eq. (15) above can be written as

q
o�uui
ot

þ qdjðuiujSÞ ¼ 	di�pp þ dj l
oui
oxj

S
 !" #

þ q �ffi; ð27Þ

where d denotes a numerical-difference operator, and the advective and diffusive flux terms are averages
over surfaces, not volume averages.

4. Formulation of an ODT-based near-wall subgrid model

Having summarized both the ODT stand-alone model and the LES model, we now describe a method

for coupling the highly resolved (in 1D space) ODT model, near all no-slip walls, with traditional 3D LES

turbulence modeling in the bulk flow.

4.1. Geometric considerations

The ODT wall model affects the LES equations in the two distinct near-wall regions illustrated in

Fig. 1(c). For reference purposes, we call the layer of LES cells that are immediately adjacent to the no-slip

wall the ODT inner region. It is in this region that the ODT model is primarily active. Although the ODT

evolution equations (Section 4.2) are only solved in the inner region, eddy events can extend from any
location within the inner region out into the LES domain. Therefore a second region, called the LES/ODT

overlap region, extends outward from the top of the inner region through a number of additional LES cell

layers. The extent of this region is determined by the length of the largest allowable eddy event, Lmax, which
in this context is related to the LES filter width. The flow in the overlap region is primarily controlled by

standard LES equations, but is affected by eddy events through an LES/ODT coupling described in Section

4.3.

Within each inner-region LES control volume, we define an ODT line that begins at the no-slip wall and

extends upward to the top of the control volume. For reasons described below, an ODT sub-control
volume is also defined and associated with each mesh point on the ODT line, as illustrated in Fig. 7. All

three ODT velocity components as well as any scalar quantities of interest, except pressure, are spatially

resolved in the wall-normal direction on the ODT lines. Pressure is only resolved on the LES-scale mesh

(i.e., one value per LES control volume) because 3D continuity constraints are imposed by pressure only

on the LES grid.

4.2. Revised ODT evolution equations

As a stand-alone model, ODT is a closed system that consists of a single ODT line. When associated with

a fixed spatial location, this form of the ODT model is applicable to flows where turbulent flow properties

are invariant in directions perpendicular to the ODT line. These conditions are not met in the present

application where the near-wall region consists of a forest of ODT lines (each associated with an LES

control volume) which, in general, may see spatially varying flow conditions. Therefore a revised form of
the ODT model is needed for use as an LES wall model. In the present approach this is accomplished by

modifying the ODT evolution equations (see Eq. (6)) as follows:
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Here, advective transfer terms due to a local advective velocity field Vjðy; tÞ have been introduced, and an
LES-scale pressure gradient term (assumed constant between LES time steps) has been included except in

the wall-normal direction ði ¼ 2Þ. These equations can be viewed as expressions of ODT momentum

conservation over the sub-control volumes illustrated in Fig. 7, and have a form that is similar to the thin

boundary-layer equations used in the two-layer wall model of Balaras et al. [4,5] (see Eq. (4)). In the present

model the j ¼ 1 and j ¼ 3 components of the advective velocity field are defined as a time-average of the

ODT velocities,

Vjðy; tÞ ¼
1

Dt

Z t

t	Dt
vjðy; t0Þdt0; j 6¼ 2; ð29Þ

where the temporal filter size has been defined as the LES time step Dt.
The additional terms added to the ODT evolution equation involve the pressure gradient and the spe-

cially defined �advecting� velocity. Both of these are quantities that have a temporal variation that occurs
over LES time scales, not ODT time scales. Thus the shorter time scale nature of the ODT fluctuations is

largely unaffected, but longer time scale effects can still be felt.

There is an important distinction between the instantaneous wall-normal ODT velocity compo-

nent v2 and the instantaneous tangential velocity components v1 and v3. In the approach developed
here, v1 and v3 are treated as having an advecting quality in that we compute V1 and V3 from
them. However, v2 is treated differently because eddy events are the model for turbulent transport

in the wall-normal direction. We conceptualize v2 as simply a representation of the wall-normal

velocity component kinetic energy per unit mass (actually the square root of that energy). Thus, no

pressure gradient is included in the evolution equation for v2. To compute the advective transport

velocity in the wall-normal direction, V2, we simply apply continuity and integrate from the wall, as

follows:

Fig. 7. Illustration of ODT points and sub-control volumes embedded in an �inner-region� LES control volume. The nominal ODT
domain is the wall-normal line passing through the center of the control volume. Points of the discretized domain also mark the ODT

sub-control volumes.
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V2ðy; tÞ ¼ 	
Z y

0

oV1
ox1

�
þ oV3

ox3

�
dy: ð30Þ

Note that this method to compute a wall-normal velocity is also used in the two-layer wall-stress model [5,9]

discussed in Section 1 (see Eq. (5)) and that this automatically satisfies continuity within the LES-scale

control volume.

Modeling the advection terms with velocities that involve temporal filtering of v1 and v3 is justified
because the spatial derivatives in the i ¼ 1 and i ¼ 3 directions in Eq. (28) are implemented numerically as

spatial differences over LES-scale spatial increments DX and DZ, respectively, as illustrated by the LES/
ODT control-volume geometry sketched in Fig. 7. (Thus, all functions of y in Eq. (28) are also functions of
x and z, though these dependencies are not shown explicitly.) In view of the coarseness of the x and z
resolution relative to the y resolution, the convective time scale for property transfer between laterally
adjacent ODT sub-volumes is the LES time scale Dt rather than the fine-grained time scale on which other
ODT processes evolve. Accordingly, temporal filtering suppresses unphysical high-frequency fluctuations

due to the more rapid evolution processes implemented in the vertical direction (which can be resolved
temporally owing to the finer spatial resolution in that direction). Of note is that the limit of the temporal

filter size going to infinity corresponds to the limit of DX and DZ going to infinity, in which case the ad-
vective term goes to zero and the equations reduce to the stand-alone ODT equations for channel flow

discussed in Section 2.

The ODT evolution equations are solved only in the inner region and boundary conditions must be

applied both at the wall ðy ¼ 0Þ and at the top of the inner region ðy ¼ DY Þ. At y ¼ DY this is accomplished
by assuming a linear variation of all velocity components at every instant in time between the last ODT

node ðy ¼ DY Þ and the corresponding LES values in the overlap region at y ¼ 3
2
DY . (The LES grid structure

and its implications for LES/ODT coupling are discussed in Section 4.6.) Given this assumption, all re-

quired boundary fluxes (both advective and diffusive) can be computed based on the boundary conditions

at y ¼ 0:

v1 ¼ v2 ¼ v3 ¼ 0;

V2 ¼ 0
ð31Þ

and at y ¼ DY :

ovi
ox2

¼ �uuijy¼ð3=2ÞDY

	
	 vijy¼DY



=½DY =2: ð32Þ

Note that in Eq. (32), �uuijy¼ð3=2ÞDY denotes the current value of LES velocity component i at a distance from
the wall equal to 3

2
DY .

Although the ODT evolution equations are solved only in the inner region, eddy events can extend from

any location within the inner region out into the LES domain.

4.3. LES/ODT coupling

The ODT wall model and the LES bulk flow model are coupled in two different ways. The first is

through the boundary conditions that each model sees at the interface region between the two domains. The

second relates to the bi-directional influence that solving the LES-scale continuity equation has on each

model.
From a boundary condition standpoint, ODT and LES interact in the following way. LES provides

ODT with the LES-scale velocities needed as boundary conditions to evolve Eq. (28), and also with the

overlap-region velocities required to evaluate and perform eddy events that extend into the overlap region.
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Because overlap-region LES control volumes do not contain ODT substructure, linear interpolation of the

LES-scale variables in the overlap region is used to provide ODT-resolved values as needed. In addition,

because the ODT equations are evolved at very short time scales relative to LES, LES-scale time-averaged

fluxes can be computed by summing the momentum transport between near-wall LES control volumes due

to ODT processes. ODT thereby provides LES with a complete description of the momentum flux at the the

top of the inner region, as well as augmented fluxes at LES control volume interfaces through which any

large ODT eddy events have extended. Thus each model provides the other with the information needed to

perform their respective simulations. Although conceptually simple, there are several important details
which require explanation.

In stand-alone ODT, the length scale of the largest possible eddy event, Lmax, corresponds to the integral
scale of the flow problem. For example, in channel flow the largest possible eddy is physically limited by the

distance between the two walls. However, as an LES subgrid model ODT is only intended to model the

effects of unresolved small-scale eddies. Therefore, the largest length scales modeled by ODT, Lmax, should
correspond to the smallest length scales captured by the LES. Fig. 8 illustrates that eddies can therefore

extend out as far as y ¼ DY þ Lmax, which defines the boundary of the overlap region. The details of how we
determine the value of Lmax are discussed in Section 5.
From an LES perspective, the main role of the ODT wall model is to provide the contribution of

subgrid-scale processes to momentum fluxes between near-wall LES control volumes. The determi-

nation of these fluxes involves, at the ODT level, specification of the areas of control surfaces across

which momentum is fluxed, both by eddy events and by viscous evolution within ODT. This is one

of several motivations for the introduction of the sub-control-volume interpretation of ODT (Fig. 7).

However, in this context the distinction between, and the respective roles of, the point value (i.e.,

line-of-sight) and control-volume interpretations of ODT evolution processes require careful consid-

eration.
As described in Section 2, ODT is formulated so that the eddy-event distribution emulates the

statistics due to 3D eddy motions that might be measured along a representative line of sight. The

validity and limitations of the use of this formulation to determine fluxes through control surfaces are

examined.

Fig. 8. Illustration of allowable eddy event locations within the near-wall region. The dashed line in the inner region indicates that the

fine grained ODT domain exists only in this region.
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Consider an ODT line that intersects an orthogonal control surface corresponding to an LES control-

volume face. A size-l eddy event can be viewed as the intersection of an eddy of volume l3 with the ODT
domain. If the size-l interval intersects the control surface, then it contributes to property fluxes (e.g., fluxes
of velocity components) across that surface. However, the subregion of the control surface that is subject to

these fluxes is of order l2, which can be considerably larger or smaller than the nominal control-surface
area. (It can be larger because eddies extending into the overlap region can be larger than the LES mesh

spacing.)

Nevertheless, fluxes deduced by assuming that the property transfers associated with any size-l ODT
eddy occur across the nominal control-surface area are valid (subject to a caveat) for the following reason.

Although the particular eddy transfers properties only across an order-l2 subregion, these property
transfers are representative of transfers across comparably sized subregions everywhere on the control

surface. Replicates of the ODT domain arranged in a 2D array with spacing l between neighboring rep-
licates would each induce property transfers analogous to the effects of size-l eddies on the original domain.
Note that this reasoning only applies to a particular l value, so this is a conceptual rather than a realizable
analogy. Nevertheless, it makes the point that ODT, though formulated from a line-of-sight perspective, is

consistent with the LES/ODT control-volume framework.
A caveat in this regard is suggested by further consideration of the conceptual 2D array, with neighbor

spacing l, of ODT domains (here taking l to be smaller than the LES mesh spacing). In LES/ODT, one
member of this array represents the entire array. This representation is valid on average, but it leads to

artificially large property-transfer fluctuations. This representation is equivalent to assuming that the

evolution is the same on all members of the array, neglecting statistical differences between processes on

individual domains that tend to reduce the aggregate variability of the flux time history across the nominal

control surface. Neglect of this effect should not have a major impact on output statistics because the main

contribution to property fluxes is from eddy events whose size l is of the order of the LES mesh spacing.
Thus, the line-of-sight (or point value) and control-volume interpretations of ODT are not equivalent, but

the differences between them are not crucial.

The accumulated fluxes due to eddy events that transfer fluid across LES control-volume interfaces are

incorporated into the LES time-stepping scheme, both to enforce consistency between ODT and LES

evolution and to evaluate unclosed terms in the LES evolution equations (with details provided in Section

4.6.2). Note that the LES-scale properties at the LES node points are considered unchanged during the fine-

grained ODT time evolution. LES-scale effects of ODT processes are implemented during time advance-

ment of the LES equations.
The second mechanism by which LES and ODT couple is through the enforcement of the global LES

continuity equation. For this purpose a relationship must be defined between ODT point values and the

LES-scale filtered velocities associated with the LES bulk-flow model. To model an LES-filtered velocity �uui
knowing only the time evolution of a discrete set of ODT values viðym; tÞ, we make the following ap-
proximation:

�uuiðtÞ ¼
1

NODT

XNODT
m¼1

Vi;mðym; tÞ: ð33Þ

In this approximation, the temporally filtered velocity Viðym; tÞ is used as an estimate of the instantaneous
volume average over a sub-control volume of height DY =NODT at a nominal distance y ¼ ym ¼
ððm	 ð1=2ÞÞ=NODTÞDY above the wall, where DY is the height of the LES control volume. Knowing each
value of Viðym; tÞ in the control volume, an LES-scale velocity (whose spatial filter is associated with the
near-wall control volume) is computed as the simple average of these values. Because the LES momentum

equations are not solved in the inner region, this definition provides an important link in the model between

the LES equations and the ODT point values that are evolved.

R.C. Schmidt et al. / Journal of Computational Physics 186 (2003) 317–355 335



In the present work, a fractional-step based numerical approach is used to temporally integrate the

global conservation equations and enforce continuity constraints on the LES velocity field (Section 4.5).

Eq. (33) provides the LES/ODT link required to define the LES velocity field within the near-wall region.

As explained in detail in Section 4.6, it also provides the defining relationship that must be enforced when

the LES velocity field is corrected based on a solution to the discrete Poisson equation. These LES-scale

corrections induce adjustments in the ODT velocities and constitute an important LES-to-ODT coupling

that contributes significantly to the overall results.

4.4. Synopsis of the coupled LES/ODT model

As modeled here, the equations simulating the turbulent flow are distinct in each of the three flow

regions, i.e., the ODT inner region, the LES/ODT overlap region, and the LES core-flow region.

In the ODT inner region, the revised ODT evolution Eq. (28) is solved subject to the boundary con-

ditions given by Eqs. (31) and (32), and the advecting velocities defined in Section 4.2. Eddy events occur at

various times and locations, and with various length scales as per the stochastic model described in Section

2. For eddy events that extend into the overlap region, ODT resolved values are obtained by linear in-
terpolation of the LES-scale variables.

When an instantaneous eddy event extending into the overlap region occurs, time-accurate implemen-

tation of conservation laws would require all affected LES quantities to be adjusted based on the net

transport across each LES control-volume face. However, in practice, the LES equations of motion are

solved numerically using time steps that are much larger than those required by the ODT subgrid model. In

the current numerical implementation (described in detail in Section 4.6), explicit LES/ODT coupling is

accomplished by accumulating the net transfer across each LES control-volume interface (from all pro-

cesses) during the ODT evolution within an LES time step. The net transfer during this time period is
summed and then divided by the LES time step – thus providing surface fluxes for input to the LES

equations. At y ¼ DY , ODT provides the entire flux (analogous to the surface flux values called for in

Schumann�s LES formulation, Eq. (27)). In the LES/ODT overlap region the LES fluxes are supplemented
by the transport associated with ODT eddy events.

In the LES/ODT overlap region, the LES equations are solved subject to a flux-matching condition at

the LES/ODT interface (i.e., y ¼ DY ), and to the supplemental fluxes caused by eddy events that extend
across LES cell boundaries in the overlap region. In the LES core-flow region, the LES equations are solved

without modification.
LES time advancement yields a revised LES velocity field that reflects the global effects of the pressure

field. At this point, ODT velocities in the inner region are adjusted to be consistent with LES. This ad-

justment event is similar to an ODT eddy event in that it occurs at an instant in time. However, this event

only affects the average velocity in the inner region, not the ODT-scale variations. The specific method used

here is explained in Section 4.6.4.

4.5. Description of the LES simulation code

The base LES code used for testing the near-wall ODT subgrid model is a structured-grid second-

order finite-difference code specifically designed for doing channel flow [32], and was obtained from

Stanford University through our collaboration with the Center for Turbulence Research. In this code,

periodic boundary conditions are imposed in the streamwise (x) and spanwise (z) directions and the
flow is driven by a constant pressure gradient in the streamwise direction. The grid is staggered (see

[20,36]) and can be stretched in the wall-normal direction using a hyperbolic-tangent mapping if

desired.
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A semi-implicit time-integration algorithm is used where the diffusion terms in the wall-normal direction

(y) are treated implicitly with the Crank–Nicholson scheme, and a third-order Runge–Kutta scheme (see
[44]) is used for all other terms. The fractional-step method of Dukowicz and Dvinsky [14] is used in

conjunction with a Van Kan [23] type of pressure term. The corresponding Poisson equation for pressure is

solved using a tri-diagonal matrix algorithm in the wall-normal direction and fast Fourier transforms

(FFT) in the periodic directions.

The three-step time-advancement scheme used in the base LES code can be written in the following way:

�uuki 	 �uuk	1i

Dt
¼ akLyð�uuk	1i Þ þ bkLyð�uuki Þ þ ðak þ bkÞLxzð�uuk	1i Þ 	 ckNð�uuk	1i Þ 	 fkNð�uuk	2i Þ

	 ðak þ bkÞ
1

q
d �PPk

dxi
	 ðak þ bkÞ

PGi
q

; ð34Þ

d�uuki
dxi

¼ 0; ð35Þ

where k ¼ 1, 2, 3 denotes the sub-step number, �uu0i and �uu3i are the LES velocities at the beginning and end of
the time step, and PGi denotes the constant portion of the pressure gradient driving the channel flow (zero
for i ¼ 2 and 3). In the present implementation, d=dxi denotes a second-order central-difference operator
and accordingly, Nð�uuiÞ represents a second-order finite-difference approximation to the advection terms:

Nð�uuiÞ ¼
d

dxj
ð�uui�uujÞ: ð36Þ

Two distinct operators for the viscous terms, Lxzð�uuiÞ and Lyð�uuiÞ, are defined so that the implicit treatment of
the wall-normal diffusion terms can be clearly distinguished:

Lxzð�uuiÞ ¼
d

dxj
ðm
"

þ mSÞ
d�uui
dxj

 !#
; ð37Þ

Lyð�uuiÞ ¼
d

dx2
ðm
"

þ mSÞ
d�uui
dx2

 !#
; ð38Þ

where the right-hand side of Eq. (37) is summed over j ¼ 1 and 3, the relation m ¼ l=q and the definition
mS ¼ lS=q of the kinematic eddy viscosity have been introduced, and second-order central differencing is
again used.

The time-advancement coefficients ak, bk, ck, and fk, k ¼ 1, 2, 3, are constants selected such that third-

order accuracy is obtained for the advection term and second-order accuracy for the viscous term. The

values of these coefficients are

c1 ¼ 8=15; c2 ¼ 5=12; c3 ¼ 3=4;

f1 ¼ 0; f2 ¼ 	17=60; f3 ¼ 	5=12;

a1 ¼ 4=15; a2 ¼ 1=15; a3 ¼ 1=6;

b1 ¼ 4=15; b2 ¼ 1=15; b3 ¼ 1=6:

Because f1 vanishes, Eq. (34) does not require the evaluation of �uuk	2i for k ¼ 1. The effective sub-time-step

for this method is Dtk ¼ ðak þ bkÞDt.
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Applying the fractional-step method of Dukowicz and Dvinsky [14] to Eqs. (34) and (35), we obtain

�̂uu�uuki 	 �uuk	1i

Dt
¼ akLyð�uuk	1i Þ þ bkLyð�̂uu�uuki Þ þ ðak þ bkÞLxzð�uuk	1i Þ 	 ckNð�uuk	1i Þ 	 fkNð�uuk	2i Þ

	 ðak þ bkÞ
1

q
d �PPk	1

dxi
	 ðak þ bkÞ

PGi
q

; ð39Þ

�uuki 	 �̂uu�uuki
Dt

¼ 	 d/k

dxi
; ð40Þ

where /k and �PP are related by

d/k

dxi
¼ ðak þ bkÞ

1

q
d

dxi
ð �PPk 	 �PPk	1Þ 	 bkLyð�uuki 	 �̂uu�uuki Þ; ð41Þ

and the hat symbol placed over a variable denotes an intermediate value. For clarity we note that Eq. (34)

can be recovered by solving for �̂uu�uuki in Eq. (40), and then substituting this identity and that of Eq. (41) back
into Eq. (39). In practice, the rightmost term in Eq. (41) is neglected, resulting in the �splitting� error as-
sociated with this method.

Solving for �uuki in Eq. (40) and applying the divergence-free constraint, Eq. (35), we obtain the discrete
Poisson equation,

1

Dt
d�̂uu�uuki
dxi

¼ d2/k

dxidxi
: ð42Þ

To advance from sub-step k 	 1 to k requires the completion of a two-part fractional-step cycle. In the
first part, Eq. (39) is solved for �̂uu�uuki , the intermediate or interim velocity field. In the second part, Eq. (42) is

solved for /k. Knowing /k, Eq. (41) is integrated (with the rightmost term omitted) to compute the change

in pressure from k 	 1 to k, and Eq. (40) is used to compute the new velocity field, �uuki .
The subgrid-scale model used to compute the subgrid eddy viscosity is the dynamic Smagorinsky model

of Germano et al. [16] with the least-square technique of Lilly [30] as described in Section 3. Averaging in

the spanwise and streamwise directions is used to compute CS (see Eq. (26)) and filtering is performed in
these directions but not in the y direction. The ratio of the test filter width to the grid filter width is taken to
be 2.0.

4.6. Numerical implementation of the near-wall model within an LES code

In order for the LES pressure field to couple properly to the ODT velocities, it is important to assure that
the spatial locations of the ODT velocity components are consistent with the LES numerical discretization.

In the staggered-grid method used in the LES code, the control volumes for mass and momentum are offset

from one another such that the velocity components are calculated for the points that lie on the faces of the

mass-conservation control volumes. This is illustrated in Fig. 9, where the LES-scale velocities are repre-

sented with large arrow heads, and the locations of the associated ODT velocity components are given by

the points that lie on the lines shown.

It is also important for the ODT temporal advancement scheme to couple in a consistent way to the LES

code. As described above, the LES time-integration scheme used here is a three-step Runga–Kutta method
where each step consists of a two-part fractional-step cycle. To use the ODT wall model, we modify this

cycle to include two additional parts specific to the near-wall ODT model. In the new part 1, the inner-

region ODT equations are evolved and the momentum exchanges at LES interfaces due to the ODT
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processes are summed. At the end of this part, values for interim LES velocities �̂uu�uuki in the ODT inner region
are computed from these results. In part 2, modified forms of Eq. (39) are solved for �̂uu�uuki throughout the rest
of the domain. The modifications correspond to ODT contributions to the surface fluxes in the LES/ODT

overlap region. Part 3 is the continuity-enforcing pressure-projection step that involves solving a discrete

Poisson equation for a pressure-adjusted velocity field �uuki . This part is unchanged. The fourth and final part
consists of adjusting the ODT-resolved profiles so that the step-ending values of ViðyÞ and viðyÞ are con-
sistent with the new pressure-adjusted LES velocity field in the inner region.
Details of each of these four parts are given next.

4.6.1. Details of part 1

We begin by defining an ODT time step Dt0, and the associated ODT time-step index k0. The value of Dt0

is much smaller than the LES time step Dt so that a significant number of ODT time steps must be taken to
advance in time from LES substep index k 	 1 to k, where k ¼ 0 represents the final state of the previous

LES time step.

Each ODT time step consists of: (a) the evolution of the molecular equations from time t to t þ Dt0, (b)
the stochastic sampling procedure by which eddy events are determined, and (c) implementation of the

selected eddy (if the sampling procedure determines that an eddy should be implemented).

The molecular equations are numerically integrated using the following explicit numerical approxima-

tion to Eq. (28):

vk
0
i 	 vk0	1i

Dt0
¼ d

dx2
m
dvk

0	1
i

dx2

 !
	 d

dxj
V k

0	1
j vk

0	1
i

	 

	 PGi

q
; ð43Þ

where PGi denotes the constant mean pressure gradient imposed on the flow, which in channel flow is zero
for i ¼ 2 and 3. This term does not reflect the fluctuating pressure field that arises due to the turbulent

fluctuations in the flow. This part of the pressure field is modeled through the pressure projection (see
Sections 4.6.3 and 4.6.4). Second-order central differencing is used to compute all gradients, and boundary

conditions are imposed as per Eqs. (31) and (32).

To compute the new ODT advecting velocity field V k
0

i , an alternative to Eq. (29) has been implemented

that avoids the need to maintain a memory-intensive history of the instantaneous ODT velocity field.

Fig. 9. Spatial location of LES and ODT velocity components on a staggered grid.
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Namely, a temporal �mixing-cup� approach is adopted. Given the values of Vi at time index k0 	 1, the values
at k0 are computed as

V k
0

i ¼ 1

�
	 Dt0

Dt

�
V k

0	1
i þ Dt0

Dt

� �
vk

0

i ð44Þ

for i ¼ 1 and 3 and Eq. (30) is applied for i ¼ 2. We note that an alternative (not implemented here) to using

Eq. (44) would be to hold V k
0

i constant over the LES sub-step k to k þ 1, and update these values at the same
time the LES velocity field is updated.

After the molecular processes have evolved from time t to t þ Dt0, the possibility of an eddy event is
evaluated through the standard ODT stochastic-sampling procedure. However, allowable eddies are limited

to those that extend into the inner region (as illustrated in Fig. 8), and the length of the largest possible
eddy, Lmax, is a model parameter that, for now, must be specified. By design it must be of the order of the
smallest length scale resolved by LES. Since this is a function of the numerics and filtering used in the LES

code, its specific value must be likewise dependent.

If a trial-eddy location and length are chosen such that the eddy extends into the overlap region (see Fig.

8), ODT-resolved values are obtained in that region by linear interpolation of the LES field variables, as

explained in Section 4.3.

Although eddy events implemented in the usual manner would modify property profiles in the LES/

ODT overlap region, the modifications are not implemented in that region. Rather, statistics are gathered,
as described next, that subsequently enable LES-scale implementation of the implied property transfers

across LES control-volume interfaces. To compute the magnitude of the LES fluxes passed across the

LES/ODT interface, ODT point values are currently used as if they are spatial averages over the ODT

subvolumes illustrated in Fig. 7. As discussed in Section 4.3, this ensures important conservation re-

quirements, but introduces a modeling artifact that may have impact on some details of the turbulence

statistics.

As the ODT velocity fields are advanced in time from LES substep index k 	 1 to k, momentum is

transferred across the interface between the inner and overlap regions by three mechanisms: molecular
diffusion, wall-normal advection, and eddy events. In addition, eddy events that extend to points greater

than y ¼ 2DY induce momentum transfer across LES control-volume interfaces in the overlap region. In

order for the ODT model to couple properly to the LES, a running sum of the net transport across all LES

control-volume interfaces due to ODT processes must be maintained. For convenience in explaining the

model, we define these sums as follows:

Sni ¼ ith component momentum transport (per unit time, mass, and area) across an interface between a
near-wall LES control volume n (where n ¼ 1 denotes the inner region) and its adjacent ðnþ 1Þ-layer
LES control volume.
SnDi ¼ that portion of Sni due entirely to the molecular-diffusive term of Eq. (43).

SnAi ¼ that portion of Sni due entirely to the advective term of Eq. (43).

SnEi ¼ that portion of Sni due entirely to ODT eddy events.
For n ¼ 1, these sums are computed as

S1;ki ¼ 	 Dt0

Dtk

X
k0

m
dvk

0	1
i

dx2

 !     
y¼DY

þ Dt0

Dtk

X
k0

V k
0	1

2 vk
0	1
i

	 
   
y¼DY

þ 1

Dtk

X
m

E1m;i ¼ S1;kDi þ S
1;k
Ai

þ S1;kEi ; ð45Þ

where the additional superscript k has been added to denote that these quantities are computed during the
interval Dtk from LES substep k 	 1 to k.
The only ODT process that can influence the LES equations at control volume interfaces greater than

y ¼ DY is an eddy event. Thus for n > 1, SnDi ¼ SnAi ¼ 0, and we can write
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Sn;ki ¼ Sn;kEi ¼ 1

Dtk

X
m

Enm;i ðfor n > 1Þ; ð46Þ

where Dtk is the sub-time-step defined in Section 4.5 and Enm;i denotes a transfer of i-component momentum
across an interface between LES layers n and nþ 1 due to an eddy event m. It is easily computed as the x2-
integrated difference in momentum (after minus before) on one side of the interface following an eddy
event.

At the end of part 1, the ODT velocity field has evolved due to advection, diffusion, and eddy events, but

without a two-way coupling with the LES velocity field (which has been held constant). Part 1 is the ODT

analog of solving Eq. (39) for the interim LES velocity �̂uu�uuki (part 2 below). Thus ODT values that have been
evolved through the end of part one are in like manner hereafter denoted with a hat, e.g., V̂V ki ðyÞ.

4.6.2. Details of part 2

In part 2 we solve for the interim LES velocity field �̂uu�uuki throughout the rest of the domain outside of the
inner region, a process corresponding to the solution of Eq. (39), but with modifications associated with the

LES/ODT overlap region that reflect ODT contributions to the LES surface fluxes in that region.

In the first LES layer of the overlap region, the transport across the LES/ODT interface at the top of the

inner region is completely specified by the values computed in part 1. Also, the LES-specified advective flux
across the top of this layer is enhanced by any contributions due to eddy events bridging this face. To

account for these effects, Eq. (39) must be modified (in this layer only) as follows:

�̂uu�uuki 	 �uuk	1i

Dt
¼ ðm þ mSÞ

Dx2
ak

d�uuk	1i

dx2

 !"
þ bk

d�̂uu�uuki
dx2

 !#     
x2¼2DY

	 ðak þ bkÞ
Dx2

S2;k	1Ei

!
	 S1;k	1Ei

	 S1;k	1Di

"
þ ðak þ bkÞLxzð�uuk	1i Þ 	 ckNxzð�uuk	1i Þ 	 fkNxzð�uuk	2i Þ

	 1

Dx2
ck �uuk	1i �uuk	12

	 
h
þ fk �uuk	2i �uuk	22

	 
i   
x2¼2DY

þ ðak þ bkÞ
Dx2

S1;k	1Ai

! "
	 ðak þ bkÞ

1

q
d �PPk	1

dxi
	 ðak þ bkÞ

PGi
q

: ð47Þ

Here, the modified convection operator Nxz is defined as

Nxzð�uuiÞ ¼
d

dxj
ð�uui�uujÞ; ð48Þ

where the right-hand side is summed over j ¼ 1 and 3. Note that the difference between Eq. (39) and Eq.

(47) is that all finite-difference terms associated with transport across the LES/ODT interface at the top of

the inner region are replaced by the explicit sums computed in part 1, and the fluxes at the top of layer 2 are

augmented by ODT contributions. For example, the first term on the RHS of line 1 of Eq. (47) are the
diffusion terms (molecular and subgrid turbulent) across the y ¼ 2DY interface from the normal LES

model. Because the wall-normal diffusion terms are integrated using a Crank-Nicholson scheme, there are

both ak and bk contributions to the sub-time-step advancement. The last term on line 1 includes the eddy

event contributions to the transport at y ¼ 2DY ðS2;k	1Ei
Þ and y ¼ DY ðS1;k	1Ei

Þ, and the molecular diffusion
term evaluated at the top of the ODT domain ðS1;k	1Di

Þ. Similarly, wall-normal advection terms for y ¼ 2DY
are found on line 3 (where both ck and fk Runge–Kutta contributions are represented) and the ODT ad-
vective term for y ¼ DY ðS1;k	1Ai

Þ is on line 4.
For all other LES volumes located within the overlap region (denoted by the superscript n, with n > 2),

Eq. (39) is revised to look as follows:
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�̂uu�uuki 	 �uuk	1i

Dt
¼ akLyð�uuk	1i Þ þ bkLyð�̂uu�uuki Þ 	

ðak þ bkÞ
Dx2

Sn;k	1Ei

�
	 Sn	1;k	1Ei

�
þ ðak þ bkÞLxzð�uuk	1i Þ

	 ckNð�uuk	1i Þ 	 fkNð�uuk	2i Þ 	 ðak þ bkÞ
1

q
d �PPk	1

dxi
	 ðak þ bkÞ

PGi
q

: ð49Þ

Note that the only difference between Eq. (39) and Eq. (49) is the addition of wall-normal transport terms

coming from the ODT eddy events crossing LES boundaries as computed in part 1.

For LES volumes located outside of the LES/ODT overlap region, Eq. (39) is solved without modifi-

cation.

4.6.3. Details of part 3

Part 3 requires values for the interim LES velocity field at all locations. To obtain these values in the

ODT inner region, we apply Eq. (33) to the ODT advecting velocities, as follows:

�̂uu�uuki

   
inner region

¼ �̂VV�VV i �
1

NODT

XNODT
m¼1

V̂Vi;m ð50Þ

for i ¼ 1 and 3. Eq. (50) is not valid for the wall-normal velocity, i ¼ 2, because of the definition of the

ODT control volumes and locations as illustrated in Figs. 7 and 9. At the top of the inner region,

the control surface through which the ODT advecting velocity V2jy¼DY fluxes fluid corresponds exactly to the

LES interface through which the LES velocity component �uu2 fluxes fluid. The LES velocity is spatially
filtered over a height DY , but the ODT advecting velocity corresponds to a cell of height DY =NODT. For use
in part 3, the ODT velocity is actually a more accurate approximation for the desired quantity because it is

determined by enforcement of continuity, Eq. (30), reflecting ODT evolution since the previous LES time

step. Thus we simply set

�̂uu�uuk2

   
inner region

¼ V̂V2jy¼DY : ð51Þ

Part 3 begins by solving the discrete Poisson equation, Eq. (42), for /k. Knowing /k, Eq. (41) is inte-

grated (with the rightmost term omitted, as explained in Section 4.5) to compute the change in pressure
from k 	 1 to k. The new pressure is then given by

�PPk ¼ �PPk	1 þ q/k

ak þ bk
: ð52Þ

Next, Eq. (40) can be applied to solve for the new velocity field:

�uuki ¼ �̂uu�uuki 	 Dt
d/k

dxi
: ð53Þ

As indicated by Eqs. (50) and (51), �̂uu�uuki in the inner region is determined solely by ODT quantities.

4.6.4. Details of part 4

The fourth and final part of the cycle consists of adjusting the ODT-resolved profiles of V̂V ki ðyÞ and v̂vki ðyÞ
to be consistent with the new pressure-adjusted velocity field in the inner region, but without significantly
modifying the microstructure of the ODT profiles. Fig. 10 is useful in explaining how this is done.

Consider an ODT advective velocity field V̂V ki ðyÞ in the inner region after the completion of part 1. Since it
has not yet been adjusted by the pressure-projection procedure, this profile is denoted with a hat. It has an

average value �̂VV�VV ki (see Eq. (50)), but may have an irregular variation with y. A linear profile can be drawn
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from y ¼ 0 to y ¼ DY that passes through the value �̂VV�VV ki at exactly y ¼ DY =2. At any location y from the

wall, one can compute a difference or �variation� between the local value of V̂V ki ðyÞ and this linear function.
After part 3 is completed, a new adjusted value for �uuki in the inner region is known. For i ¼ 1 and 3, we

impose the requirement that the difference (as a function of y) between the new V ki ðyÞ and the line 2�uuki y=DY
is the same as the difference function V̂V ki ðyÞ 	 2 �̂VV�VV

k
i y=DY . Put another way, we obtain V

k
i ðyÞ by adding a

linear profile to V̂V ki ðyÞ that enforces �VV ki ¼ �uuki , where the left-hand side of this equality represents the average
of V ki ðyÞ over 06 y6DY , as defined by Eq. (33). This gives

V ki ðyÞ 	 2
�uuki y
DY

¼ V̂V ki ðyÞ 	 2
�̂VV�VV ki y
DY

ð54Þ

for i ¼ 1 and 3. After V k1 ðyÞ and V k3 ðyÞ are found, V k2 ðyÞ is computed using Eq. (30).
To preserve the relationship between instantaneous and time-filtered ODT velocities when this adjust-

ment is performed, the ODT instantaneous velocity profiles are adjusted based on the relationship

vki ðyÞ 	 2
�uuki y
DY

¼ v̂vki ðyÞ 	 2
�̂VV�VV ki y
DY

ð55Þ

for i ¼ 1 and 3. vk2ðyÞ is not adjusted because it is not kinematically linked, through relations like Eqs. (44)
and (50), to LES-scale processes.

At the end of part 4, all values have been advanced from LES sub-time-step k 	 1 to k.

4.7. Remarks

The LES/ODT subprocesses and couplings are formulated to be complementary, each providing the

other with the information needed to simulate flow evolution within the range of scales that it represents.

However, we note here that neither the ODT momentum equation, Eq. (28), nor the adjustment in part 4
communicates the large-scale forcing to the wall-normal ði ¼ 2Þ ODT velocity component. It is neither

necessary nor desirable to couple v2 to these forcings. Continuity is sufficient to determine the advective
velocity V2 that provides an LES-scale representation of the effect of ODT evolution on wall-normal flow.

Fig. 10. Illustration of how an ODT velocity field is adjusted following a pressure-projection update.
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As in ODT stand-alone implementation, v2 is a kinetic-energy reservoir that is incorporated to improve the
fidelity of the ODT representation of energy transfers among the three velocity components. Owing to the

distinctive role of v2 in the formulation of the ODT event-rate distribution, v2 may have additional physical
significance in future applications to transition and other phenomena that are sensitive to details of this

formulation.

5. Coupled LES/ODT simulations of channel flow

Fully developed turbulent channel flow has been studied extensively in the past and both experimental

data [12,45] and numerical DNS data [33] are available for comparison purposes. Stand-alone ODT results

for this flow are presented in Section 2.4. Here we present results based on the coupled LES/ODT model.

The LES computational domain is 2p, 2p=3, and 2 in the streamwise (x), spanwise (z), and wall-
normal (y) directions, respectively. Calculations were performed at Reynolds numbers based on friction
velocity ranging from 395 to 10,000 in order to test the modeling over a wide range of Reynolds

numbers. For all but the highest-Reynolds-number flows considered, the domain is discretized by a
relatively coarse 32� 32� 32 uniform grid in the streamwise, spanwise, and wall-normal directions. As

the Reynolds number is increased, a smaller portion of the total kinetic energy is captured on the LES

grid. Thus for the higher Reynolds-number flows the resolution was increased and a uniform

48� 48� 64 discretization was used. Although more refined LES meshes could have been chosen, an
important purpose of this work is to test the new approach under coarsely meshed LES conditions

representative of typical mesh resolutions expected in real-life applications. This is the same rationale

invoked by other wall-model researchers (e.g., [8,9]) whose domain size and mesh resolutions have been

similar. This choice is also supported by the study of wall modeling using suboptimal control theory by
Nicoud et al. [34] who showed that a 32� 32� 32 uniform grid was adequate to yield reasonable mean

flow predictions in channel flow at friction-velocity based Reynolds numbers ranging from 640 to

20,000.

To resolve the ODT domain properly, an ODT near-wall mesh spacing of approximately 1 wall unit ðyþÞ
was found to be sufficient to achieve grid-independent results.

To perform a set of coupled LES/ODT calculations, the ODT model constants C, Z, a, and Lmax must be
specified. a ¼ 2=3 is used for all results shown in this section, and Z is again assigned the value 98. These
values, together with the choice C ¼ 12:73, yield a good fit of DNS data by stand-alone ODT (Section 2.4).
For LES/ODT, it is found that a slightly lower value of the overall rate constant, C ¼ 9:9, is the best value
for matching the DNS mean velocity profile at Res ¼ 590. This adjustment reflects the impact of the large

scale LES forcings on the ODT model when coupled together. Although the adjustment is relatively small,

it nevertheless is sufficient to imply a distinction between the coupling of near-wall and bulk regions in

stand-alone ODT and LES/ODT, respectively.

The coupled LES/ODT model requires a different approach for determining the maximum eddy length

parameter, Lmax, than was used when doing stand-alone ODT calculations. This is because the integral
length scale of the flow (e.g, the channel width) is no longer an appropriate measure of this parameter.
Instead, Lmax is now associated with the LES filter width, and determines the length of the overlap region (as
illustrated in Fig. 1(c)). It corresponds physically to the largest length scale captured by ODT, and should

also correspond approximately to the smallest length scales resolved by the LES.

To determine the appropriate value of Lmax, a simple parametric sensitivity study was performed. Fig. 11
illustrates the results of this exercise for flow at Res ¼ 590. Four different simulations were performed,

keeping all other values and conditions constant except for the value of Lmax. A large change is seen as Lmax
is increased from 2DY to 3DY , but very little difference is seen as its value is increased from 3:5DY to 4DY .
These results are consistent with the notion that this value should correspond approximately to the smallest
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length scales resolved by the LES on the numerical mesh. For all other calculations shown here we use the

value Lmax ¼ 3:5DY .
Table 1 summarizes six calculations performed as a test of the current LES/ODT coupled model. In each

of these runs, the values of C, Z, a, and Lmax were held fixed at the values specified above. In each case, the
simulation was started by specifying a randomly perturbed initial velocity profile and then allowing

the computation to proceed without taking statistics until the initial transient behavior had settled out and

the time-averaged wall stress balanced the mean pressure gradient exactly. This typically occurred within

several hundred non-dimensional time units (based on bulk velocity and channel half width). Statistics were

then taken over non-dimensional time periods of about 300 time units. As a final check, the calculations

were then continued over a similar time period and the results compared so as to assure that the statistics

were adequately converged.

For each calculation both an LES time step Dt and a smaller ODT time step Dt0 must be appropriately
chosen. Here, the LES time step was specified such that the maximum CFL condition was approximately

0.5. Because the meshes used are relatively coarse, the LES time step is comparatively large, and adequate

statistical samples (see above) are obtained for runs of only a few thousand LES time steps. The smaller

ODT time step Dt0 was set based on the need to keep the mean acceptance probability �PPa small (see Section

Table 1

Computed cases

Case Res Re NODT DyþODT Nx Ny Nz

A 395 14,020 24 1.03 32 32 32

B 590 22,472 32 1.15 32 32 32

C 1200 49,336 64 1.17 32 32 32

D 2400 108,624 128 1.17 32 32 32

E 4800 234,332 128 1.17 48 64 48

F 10,000 534,224 256 1.17 48 64 48

Fig. 11. Sensitivity of the LES/ODT mean velocity profiles to different values of Lmax.
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2.3), and for convenience in maintaining consistency with the Runge–Kutta time-advancement coefficients

(Section 4.5). Specifically, Dt0 was chosen for these calculations so that: (1) �PPa6 0:05 and (2) Dt/Dt0 was
divisible by 15. Numerical stability requirements for the discrete ODT equations (Eq. (43)) were also

monitored during each run to assure that the time step based on these conditions was sufficiently small to

avoid stability problems.

All calculations were performed on single-processor SGI workstations with run times varying from

several hours for the lower-Reynolds-number flows to several days for the highest-Reynolds-number flows.

(Note that because extensive optimization of the code and model algorithms has not yet been attempted,
some improvement in run times is expected when this is done.) The comparative computational cost of the

ODT near-wall model relative to the bulk-flow LES model depends upon three things: (1) the surface-to-

volume ratio of the particular flow being modeled, (2) the size of the LES mesh (which also determines the

spatial domain near the wall that ODT must simulate), and (3) the flow Reynolds number (which deter-

mines the length and time scales that must be resolved at the wall). Complicating the assessment of these

relative costs is the fact that the inner region ODT costs scale with problem size in a distinctly different way

than the bulk-flow LES calculation does.

Because cases A–D were calculated on the same uniform LES mesh the bulk-flow LES portion of the
CPU cost per time step remained constant. For our reference SGI workstation this cost was 0.53 s.

Likewise, cases E and F shared the same bulk-flow LES CPU cost per time step (4.83 s). However, because

the flow Reynolds numbers were different for each run, the near-wall ODT mesh size, time steps, and CPU

costs varied with each run. Initially, it was expected that for a given flow configuration (e.g., channel flow)

and associated fixed LES mesh, that the near-wall ODT model costs would scale as Re2s – reflecting the
linear increase in ODT nodes in 1 spatial dimension and also a linear decrease in ODT time step. However,

the actual increase in CPU cost scaled approximately as Re2:3s . This variation from expected behavior was

due to a somewhat larger than expected rate-of-decrease in ODT time-step size required to maintain the
desired acceptance probability Pa as higher Reynolds number flows were calculated. For comparison, the
ODT portion of the CPU cost per LES time step was 0.36 s for case B and 41.4 s for case E.

To illustrate the results of the overall LES/ODT modeling approach for channel flow, the figures that

follow generally present data over the entire channel flow domain (i.e., wall to centerline). However, our

focus is primarily on the ODT-based near-wall model and its transition to the bulk-flow LES. We note that

the performance of the LES model in the outer-flow region away from the wall is not a new contribution,

but is simply consistent with what would be expected from the dynamic SGS model (and the second-order

numerical methods used) for the conditions and relatively coarse meshes specified.
Fig. 12 helps illuminate the dynamics of the coupled LES/ODT model by showing near-wall mean and

instantaneous velocity profiles for an illustrative calculation at Res ¼ 1200. In contrast to the smoothly

varying time-averaged profile that is shown, instantaneous profiles are highly irregular. Of particular note

are the wrinkling effects of eddy events on the velocity profiles in the ODT inner region. At the particular

instant shown, the effects of both large and small eddy events can be clearly seen. Furthermore, the

smoothing effect of molecular processes over time can be seen and contrasted to the sharp gradients im-

posed by recent eddy events.

Fig. 13 presents LES/ODT model results for the mean velocity profiles over the Reynolds-number range
indicated in Table 1. For cases A and B, the DNS data of Moser et al. [33] are available and are used for

direct comparison. For all cases, the inner law, uþ ¼ yþ, and a commonly accepted [12] log law,

uþ ¼ 2:44 lnðyþÞ þ 5:2, are also plotted for comparison. Data symbols are used to denote LES/ODT node-
point values in order to highlight the increased resolution of the model in the ODT domain.

When compared with results for the mean velocity profiles obtained from alternative LES near-wall

models, the results demonstrated in Fig. 13 are excellent. For example, in evaluating several near-wall

models (including the two-layer model of [5]) which were coupled to the same standard dynamic SGS model

used here, Cabot and Moin [9] noted that results are generally poor for the mean streamwise velocity in the
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first few off-wall grid points. The main point of concern was that the near-wall slope was too shallow,

leading to a low intercept in the logarithmic region. (Note that improvements were made by adjusting the

near-wall dynamic coefficient [9].) This can be compared with the LES/ODT results shown here where near-

wall mean velocities are predicted quite well with no adjustments to the near-wall LES model coefficients.

At all Reynolds numbers, the simulations produce a physically realistic viscous sublayer smoothly tran-

sitioning through the buffer zone into a log layer. No discontinuity in slope is seen between the highly
resolved ODT inner region and the first and second near-wall LES nodes, which lie in the LES/ODT

overlap region. However, between the second and third LES nodal values (near the edge of the LES/ODT

overlap region), a slight rise in the mean profile can be noticed. This occurs as the modeling of turbulent

transport shifts from being primarily captured by 1D ODT eddy events to the 3D LES flow model, and

merits further study to be better understood. Although detectable, this artifact is small when compared to

the large buffer layer that appears in the detached-eddy simulation (DES) mean-velocity results for channel

flow presented by Nikitin et al. [35] and is further discussed in [37]. In DES, as the flow transitions from the

inner-region RANS model to the outer-region LES model, a major change in the mean velocity gradient is
seen, leading to two distinct logarithmic layers, the second of which is artificially high.

Fig. 14 is a plot of the friction coefficient as a function of Reynolds number. The LES/ODT results,

extending over a wide range of the bulk-flow Reynolds number, are in good agreement with DNS and

experimental results. At the highest Reynolds numbers (cases E and F), the LES/ODT results suggest a

trend that is slightly high compared to the correlation of Dean [12]. This difference is most likely due to the

poor LES resolution of the wake region, leading to a comparatively lower bulk velocity and thus a higher

friction coefficient (see [8] for a discussion of this topic).

Figs. 15–19 are plots of root-mean-square (RMS) velocity fluctuation profiles, normalized by us. These
results are important because they help characterize the near-wall dynamic behavior that cannot be ob-

tained from low-order RANS-based models. The dynamic fluctuations that are reflected in these profiles are

also important to multiphysics applications in which physical processes such as heat transfer and chemical

reactions are sensitive to these fluctuations.

In Fig. 15 LES/ODT-computed RMS velocity fluctuation profiles at Res ¼ 590 are compared with the

DNS calculations of Moser et al. [33] and results of the previously discussed stand-alone ODT calculations

Fig. 12. Near-wall mean and sample instantaneous velocity profiles.
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(Section 2.4). We begin by noting that overall, the magnitudes and shapes of the LES/ODT RMS velocity

fluctuation profiles compare quite favorably with DNS and show noticeable improvement over stand-alone

ODT results. This improvement reflects the impact of large-scale LES forcings on the ODT model when

coupled together, and highlights the complementary nature of the combined modeling approach.

In comparing LES/ODT results for urms with DNS, we can see (1) perfect agreement for yþ < 9, (2) a

somewhat flattened peak region where the LES/ODT results are about 10 percent lower than DNS, (3)

good agreement (although slightly high) in the central channel region (yþ > 200), and (4) a rise of LES/

ODT values compared to DNS as the wall is approached from the central region, but a return to the DNS
profile in the LES/ODT overlap region. Elevated values of urms near the wall are symptomatic of under-
resolved LES (e.g., [29]); this figure illustrates clearly how the ODT subgrid model coupling acts to suppress

this problem.

For stand-alone ODT, only a single profile is plotted for both wall-normal vrms and spanwise wrms ve-
locity fluctuations because in the current three-component model, the statistics for these two components

Fig. 13. Semilog plot of LES/ODT mean velocity profiles for a range of Reynolds numbers. Successive profiles are vertically displaced

for clarity. Pairs of overlapping symbols reflect the folding of the computed profiles for the two channel walls onto a single profile.
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are identical. Their near-wall behavior is intermediate between the DNS data for vrms and wrms. However,
for LES/ODT the profiles are not identical because they couple to distinctly different LES velocity fields.

This can be seen in Fig. 15 where very near the wall, the profiles are almost identical, but as the top of the

inner region is approached and the coupling to LES becomes stronger, the profiles diverge. We also note a

small dip in the wrms profile at the upper edge of the inner region, and a subsequent discontinuity in the
slope (also seen in each of the other profiles). This reflects the abrupt jump from a finely resolved ODT

mesh to the much coarser LES mesh and may be associated with the rather simple interfacial boundary
conditions applied.

Fig. 15. Root-mean-square velocity fluctuation profiles normalized by the friction velocity for Res ¼ 590 and computed from LES/

ODT (open symbols), ODT stand-alone (filled symbols), and DNS [33] (solid and dashed lines).

Fig. 14. LES/ODT computed friction coefficient for channel flow compared to DNS data [33] and the correlation of Dean [12]. Here,

Re is based on the bulk velocity and the channel width (2h).
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In Fig. 16, LES/ODT results for urms from simulations at six Reynolds numbers are compared to

the DNS results of Moser et al. [33] and the data of Wei and Willmarth [45]. (Unfortunately, re-

liable near-wall data for RMS velocity fluctuations are not currently available for channel flow at

high Reynolds numbers comparable to Cases E and F.) This figure illustrates that most of the

characteristics pointed out in commenting on Fig. 15 remain apparent for all cases considered. All

cases collapse to a single curve for yþ < 9, and show a somewhat suppressed and flattened peak

region relative to DNS and measurements. One trend of note is the clear transition from scaling on
inner variables very near the wall to the qualitatively correct Reynolds number dependence away

from the wall. Although not plotted here, away from the wall all cases collapse to a single curve if

plotted in global coordinates (y) [28] and show good agreement with the DNS and experimental

data.

Fig. 16. Streamwise root-mean-square velocity fluctuation profiles normalized by the friction velocity.

Fig. 17. Spanwise root-mean-square velocity fluctuation profiles normalized by the friction velocity.
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In Fig. 17, LES/ODT results for wrms are shown. The DNS results of Moser et al. [33] are once again
plotted for comparison with the lower Reynolds number cases. (Note that wrms data was not obtained by
Wei and Willmarth [45]). Although the very near-wall (i.e., yþ < 9) LES/ODT profiles are consistently

lower than the DNS results, the slight Re dependence shown by the DNS results even at the lowest values of

yþ is captured by the LES/ODT model. As with the urms results, the peak region is flattened, but the profiles
transition rapidly to their expected values away from the wall where LES is unmodified by the near-wall

subgrid model.

Fig. 18 is a plot of vrms that shows LES/ODT results, the DNS results of Moser et al. [33], and the
data of Wei and Willmarth [45]. Here the LES/ODT profiles are consistently higher than the DNS data
in the inner region, diverge from scaling on inner variables at a smaller value of yþ, and peak at a
lower value of yþ – once again reflecting the intermediate nature of the ODT vrms component be-

Fig. 18. Wall-normal root-mean-square velocity fluctuation profiles normalized by the friction velocity.

Fig. 19. Wall-normal root-mean-square velocity fluctuation profiles normalized by the friction velocity. Inner region values taken from

the advecting velocity defined by Eq. (30).
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tween the DNS vrms and wrms. At the top of the inner region, the profiles tend to dip due to the in-
creasing influence of the LES. In the overlap region the profiles gradually converge to the LES

dominated behavior, which is broadly consistent with the available data in the central portion of the

channel.

In constructing the LES/ODT subgrid model, a set of advecting velocities is defined in Section 4.2.

V1 and V3 are based directly on v1 and v3 respectively (see Eq. (29)), and results show that the RMS

velocity fluctuation profiles based on V1 and V3 are virtually the same as the RMS profiles based on v1
and v3. However, the advecting wall-normal velocity component V2 is based on satisfying continuity in
the ODT sub-control volumes (see Eq. (30)), and is not directly tied to the ODT component v2. Fig. 19
is identical to Fig. 18 except that Vrms is plotted in the inner region instead of vrms. As can be seen,
these profiles are quite different. Here we see that the LES/ODT values for Vrms are consistently lower
than the DNS data. In fact, the DNS data falls intermediate between the values for Vrms shown here
and the values for vrms shown in Fig. 18. Also of note is the strong Reynolds-number dependence of
Vrms even in the very near-wall region. This points out that V2 is subject to large-scale influences even
near the wall, which may be an artifact of the LES-scale averaging (V2 is an average over an X–Z face,

as illustrated in Fig. 7) or the simple profile assumptions made in constructing the velocity adjustment
described in Section 4.6.4. In this context, V2 may be viewed as an auxiliary quantity used to enforce
continuity. v2 provides a better, though approximate, representation of wall-normal single-point flow
statistics.

6. Discussion

In this paper we have presented a novel approach to LES wall modeling based on the ODT model of
Kerstein et al. [27], and described details and results from our first implementation of a practical model

based on these ideas. In this regard, a variety of physical modeling and numerical implementation issues

have been addressed. As with all models, the ODT-based model presented here invokes approximations of

the near-wall flow physics which lead to some differences when compared to detailed DNS or experimental

data. However, an important distinguishing attribute of this approach is that Reynolds averaging and all

associated modeling approximations (such as an eddy-viscosity model) are avoided. Therefore, detailed

comparisons can be made with experimental and DNS turbulence data in the very-near-wall region that are

not possible with previous approaches. Furthermore, because near-wall velocity and scaler fluctuations are
intrinsic elements of the model, the approach holds promise as a method for treating certain multiphysics

problems that would be difficult to simulate well with other wall models.

As an initial test of the model, computed results for turbulent channel flow have been compared to DNS

and experimental data over a large range of Reynolds numbers. Although this problem is geometrically

simple, it is important because detailed data (including higher-moment turbulence data) is available, and it

is a standard problem against which almost all other LES wall-models have also been tested. With respect

to the mean velocity and friction coefficient, the results obtained demonstrate the excellent performance of

the present model when compared with previous models and correlations. Furthermore, near-wall results
for higher-order statistics are shown to be directly comparable to DNS data, and clearly illustrate that the

near-wall ODT model dynamics are intimately coupled with the dynamics of the outer-flow LES, allowing

for two-way interactions that produce near-wall turbulence statistics and scalings that are notably im-

proved over ODT as a stand-alone model. However, despite these encouraging results, additional tests and

comparisons against data for more challenging flow configurations involving separation, reattachment, and

other related effects are needed before the relative performance and cost of this new model can be thor-

oughly understood. It is expected that more complicated flows will be well represented because LES/ODT

incorporates a basic attribute that is essential for a robust near-wall treatment, namely, physically rea-
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sonable time-lagged response to transient bulk forcings. For example, if the bulk flow undergoes a reversal,

this transient will be communicated gradually inward toward the wall by ODT processes. Reversal of the

wall-shear direction will occur after a period of nonmonotonic near-wall flow structure (superimposed on

the ever-present nonmonotonicity due to turbulent fluctuations).

The computational cost of the present model relative to the bulk-flow LES model depends upon three

things: (1) the surface-to-volume ratio of the particular flow being modeled, (2) the size of the LES mesh

(which also determines the spatial domain near the wall that ODT must simulate), and (3) the flow Rey-

nolds number (which determines the length and time scales that must be resolved at the wall). Although
direct comparisons with other wall models are not performed here, the computational cost of the present

model clearly lies intermediate between DES and wall-stress models (including the two-layer model), and

fully resolved LES of the near-wall region. The major additional cost over models such as DES and the

two-layer model is associated with temporally resolving the eddy event frequencies down to the smallest

scales.

With regard to computational cost, it is useful to make several additional comments. First, because the

LES mesh does not require near-wall refinement, the effective LES time step associated with the CFL

condition can be much larger. This is a benefit shared by all wall models and, by itself, introduces a sig-
nificant cost savings over an LES in which the near-wall region is fully resolved. Second, the cost of doing

the LES portion of the problem scales with problem size (i.e., the mesh) differently than the ODT part. This

scaling will depend strongly on the numerical (and potentially parallel) algorithms used in the LES code,

but is not expected to scale as favorably as does the ODT part of the problem (which for the present model

scales approximately as Re2:3s ). For a given geometry at a fixed Reynolds number the overall cost becomes a

tradeoff – increasing the resolution of the LES mesh will increase the cost of the LES portion, but decrease

the relative cost of the wall model because the number of ODT points required in the wall-normal direction

is reduced. Because these scale differently and because the relative importance of the bulk flow compared to
the near-wall region depends upon the purpose of the simulation, a general rule is difficult to specify. To

illustrate this tradeoff we compare the costs of case D (Res ¼ 2400, 32� 32� 32 LES grid, 128 ODT points
per ODT line) with a new case D0, where the LES mesh is increased to 64� 64� 64 but which now only has
64 ODT points per ODT line. For the original case D the near-wall model was about 95% of an overall

simulation cost of approximately 15 s per reference time unit – a relative cost that was the highest of all the

cases performed. For case D0, simple tests on our reference workstation show that the near-wall model (now

associated with four times as many ODT lines but with half as many ODT points per line) is only ap-

proximately 35% of the new overall simulation cost of about 70 s per reference time unit. (Note that for a
constant CFL, twice as many LES time steps per reference time unit are required for case D0.) This il-

lustrates that, in general, the bigger the overall LES problem, the smaller the relative cost of doing the near-

wall portion. Our experience here with channel flow suggests that the cost of an ODT-based wall model for

large LES problems will be roughly the same cost as the LES bulk-flow portion of the calculation. (See [28]

for additional details on this topic.)

Future efforts will focus on questions in several areas. First, additional tests in more complex flow

configurations are needed (as described above). Second, model improvements such as non-uniform ODT

mesh spacing (to reduce ODT costs) and refined methods for coupling to the LES in the overlap region are
being explored. Third, as improvements to ODT are developed (such as an improved representation of the

differences between vrms and wrms), they will be incorporated and would be expected to favorably affect the
coupled LES/ODT model described here. Finally, there are certain methodological issues yet to be ad-

dressed, such as the existence of grid-independent solutions as grid resolution and time-step refinement are

increased. LES formulations applicable to flows of interest have some inherent difficulties in this regard. It

is important to understand whether the ODT near-wall closure worsens or lessens these difficulties.

Stand-alone ODT is particularly useful for simulating turbulence-microscale interactions due to its fully

resolved treatment of fine-scale phenomena. In particular, molecular mixing occurs solely by means of
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physically realistic diffusive transport because advective processes are represented by a purely advective

model construct (eddy events) rather than by eddy diffusivity. Accordingly, stand-alone ODT is especially

advantageous for turbulent combustion modeling [15]. However, the near-wall formulation introduced

here, though suitable for momentum closure, may not be similarly advantageous for subgrid combustion

closure. The lateral advection that couples ODT sub-volumes in adjacent LES control volumes (Section

4.2) is implemented at LES spatial resolution and therefore introduces numerical diffusion far in excess of

ODT-resolved viscous transport. This numerical diffusion does not necessarily dominate ODT-resolved

eddy transport in the vertical direction (though this issue merits further investigation), but it certainly
dominates mixing by molecular diffusion. A robust closure for mixing-sensitive processes such as com-

bustion must avoid this artifact. An approach that satisfies this requirement has been formulated [26] and

will be implemented and tested in the future.
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